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Longtime divergence of semiclassical form-factors 

J P Keating 
Department of Mnthematics, The University, Manchester MI3 9PL, UK 

Received 25 February 1994 

Abstract. The quantum form-factor K (r)-the Fourier transform of the spectnl auto-correlation 
function-may be represented semiclassically in terms of a sum over classical periodic orbits. We 
consider the problem of how this approximation behaves in the limit of long (scaled) time r.  It 
is shown that whilst K itself tends to unity. the periodic-orbit sum typically grows exponentially 
as z + 00. This behaviour is related to the f a t  that leadingorder semiclassical quantimion 
methods yield complex eigenvalues with imaginary pans that are of higher order in Planck's 
constant. Divergence from the quantum limil begins when I = r'p), which, for typical two- 
degreesof-freedom systems and maps, is shown to be independent of h as f i  + 0. In the case 
of the baker's map. however. quantum diffraction from the classical discontinuity instead c a w s  
the analogue of r' to tend to zero like N - ' D ,  where N is the integer that corresponds to the 
inverse of Planck's constant. This is in agreement with recent numerical sludies. Finally. we 
consider the implications of the semiclassical divergence studied here for the method developed 
by & g a m  er 01 (1993) of investigating correlations between lhe periodic orbits of chaotic 
systems. 

1. Introduction 

One of the main themes in the study of the quantum properties of classically chaotic systems 
has been the conjecture that energy-level spectra exhibit universal statistical correlations 
which are the same as those found in random matrix theory (Berry 1987, Bohigas 1991). 
This phenomenon is essentially semiclassical in nature and a theory has been developed, 
based on the leading-order asymptotics of the spectral density of states ash -+ 0 (Gutzwiller 
1971). which explains some features of this universality (and deviations therefrom) in terms 
of properties of the associated classical motion (Hannay and Ozorio de Almeida 1984, Berry 
1985). My purpose in the present paper is to pursue this theory to its limits in order to see 
where and how it ultimately breaks down. 

The analysis of Berry (1985) focussed on the spectral form-factor K ( t ) ,  the Fourier 
transform of the eigenvalue pair correlation function, and provided an explicit expression 
for K S c ( 7 ) ,  the leading-order semiclassical approximation to K, in terms of a sum involving 
the set of classical periodic orbits. Applying a sum rule derived in Hannay and Ozorio de 
Almeida (1984). this could then be estimated for values of r (the time measured in units of 
27rhd, where d is the mean spectral density) in the range t < 1. The results agreed exactly 
with the corresponding limit of the appropriate Random Matrix Theory form-factors. In the 
region 7 >> 1, the limiting behaviour was probed using a semiclassical sum-rule for the 
trace formula, obtained by appealing to properties of the fully quantum density of states 
function. The conclusion was that for all systems with a non-systematically degenerate 
spechum, K S C ( 7 )  % 1 in this range. Essentially, the argument involved is equivalent to the 
assumption that since it can be shown that K ( 7 )  zz 1, then K" should exhibit the same 
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behaviour. Again, the result agrees with the corresponding limit of the associated random 
matrix theory statistics. 

It is this second stage in the semiclassical analysis which will be studied in more detail 
here, Our aim is the see how the long-time behaviour of K X c  is affected by the fact that it 
represents only a leading-order asymptotic result, that is, whether higher-order terms in the 
semiclassical expansion can indeed be neglected without compromising the ability of K" 
to approximate K in the range r >> 1, where it is most sensitive to the detailed properties 
of the eigenvalue spectrum. In fact we shall find that for typical two-degree-of-freedom 
systems and for phase space maps they cannot. Specifically, the arguments to be presented 
here lead to the conclusion that the sum over periodic orbits which defines K g E  diverges 
exponentially as r + W. 

The method we use to show this is based on the fact that leading-order semiclassical 
quantization formulae typically give rise to energy-level approximations that are complex. 
The actual levels themselves must, of course, be real and so this might seem at first sight to 
be to be something of a paradox. The explanation is that the imaginary parts, which arise 
due to the approximations involved, are of higher order in powers of R than the real parts. 
It means that K", the expression for which was derived using only the leading-order result, 
in fact contains statistical information about complex eigenvalues, and it is the imaginary 
parts of these that give rise to a divergence in the long-time limit. (Our results thus have 
no connection with those of Aurich and Sieber (1993), which concern a class of systems 
for which Gutzwiller's formula is exact.) 

There are two reasons for our interest in the behaviour of K" in the range r > 1. First, 
there have recently been a number of important developments in the general study of the 
long-time properties of semiclassical formulae, especialiy with regard to the propagation 
of wavefunctions beyond the 'chaos time' (Heller and Tomsovic 1993). Our results are 
complementary to these in the sense that they are concerned with time-scales that are much 
longer, being of the order of A-' for two-degree-of-freedom systems and maps as opposed to 
log ( E - ' ) .  Second, the semiclassical approximation to the quantum form-factor was recently 
employed as the basis of a method to investigate correlations between the actions of the 
periodic orbits in strongly chaotic systems (Argaman et a1 1993). This involved the key 
assumption that K can be approximated by Ksc over a suitably large range of values of 
r .  Restrictions on this range limit the information that can be obtained about the orbit 
correlations. In connection with this work, a numerical evaluation of K" was carried out 
for the baker's map (Argaman et U! 1993, Dittes et al 1993), which showed, surprisingly, 
an exponential growth beginning at a time r' @'I) such that r* ( h )  -+ 0 in the semiclassical 
limit. This is clearly at variance with the known behaviour of K itself. Obviously, if i t  
represents a general phenomenon, this casts serious doubt on the validity of the action- 
correlation analysis. We shall argue that it  does not. A divergence is to be expected for 
typical systems, but not of the form found for the baker's map. In particular, it typically 
begins at values of r large enough for it not to have such serious implications for the results 
derived by Argaman er al. The properties of the baker's map are thus non-generic in this 
respect and are traceable to the discontinuous nature of the transformation. 

2. The semiclassical form-factor 

The form-factor K ( r )  is defined to be the Fourier transform of the spectral autoconelation 
function. Thus if the density of states for the set of eigenvalues E.. 

d ( E )  = Cs(E -En) (1) 
n 
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is split into its mean 2 (given by the Weyl series) and fluctuations thereabout 2, then 

where the angular brackets denote an average with respect to E over a range A E  such that 
2-I << A E  << E ,  i.e. 

It is clear from its definition that K is an even function of r .  

order asymptotic form as h + 0: 
A semiclassical approximation to K may be obtained by substituting for 2 its leading- 

where S j (E)  and u j  represent the action and Maslov index of the j th  periodic orbit of the 
corresponding classical flow, and Aj(E) is related to both the associated stability and to the 
period T , ( E )  (Ciutzwiller 1971). The result (Berry 1985) is that 

K (t) K5C(t)  (5 )  

where 

with T = 2zFdr.  It is important for our purposes to note that because the periodic orbit 
sum (4) typically does not converge in the region of integration in (2). this expression 
for KIc  is essentially formal. In fact, convergence is only achieved, and hence the above 
substitution is only valid, provided the energy E is given a sufficiently large imaginary part 
(Eckhardt and Aurell 1989). We shall return to this point again later since it is central to 
the main problem of interest here. First we will explain precisely what this problem is. 

The general question that we intend to focus on is the following: over which range of 
values of r does the approximation (5 )  hold? In particular, is the double sum in (6) able to 
reproduce the limiting behaviour K ( s )  + 1 as r + w? In order to answer this, we shall 
begin by first outlining an argument which leads to the quantum result itself. Our analysis 
of the corresponding behaviour of Ksc  will then follow similar lines. 

The long-time limit of K ( r )  can be extracted directly from an explicit expression which 
derives from the definitions ( I ) ,  (2) and (3), together with the decomposition d = 2 + 2: 

where the sum includes all pairs of eigenvalues whose mean lies within a range of size 
A E ,  centred on E. In the limit as t + 03, all of the terms in the sum are increasingly 
oscillatory, except for those corresponding to pairs such that E,  = E,. Assuming no 
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systematic degeneracies, there are approximately AEJ ( E )  of these constant terms in the 
range of summation. Hence, after any amount of smoothing it is clear that K ( 5 )  + 1. Also 
apparent is the fact that this limiting behaviour emerges when JrlEn+,  - E,I >> I ,  that is, 
when r >> I .  

The large-r behaviour of Ksc was first considered in Berry (1985). The approach taken 
there was based on the semiclassical sum rule that follows directly from the assumption 
that the quantum identity 

lim 2nsd2(E + i&) = d ( E )  
e 4  

which holds for non-degenerate spectra is satisfied by the semiclassical periodic orbit 
approximation to the density of states as well. It was shown that if this is valid then 
it implies that Ksc has the same limiting form as K .  Our aim here is to investigate whether 
this is indeed the case by deriving a semiclassical analogue of (7) and then applying an 
argument closely relafed to that used above for K itself. 

The starting point of our analysis is the extension of (4) into the complex energy plane. 
This is necessary because, as noted earlier, the periodic orbit sum does not converge when 
E is real, that is, where the integration in (2) is to be carried out (for classically integrable 
systems it converges when E is given any non-zero imaginary part, whereas for classically 
chaotic systems one must go a finite distance into the complex E plane, i.e. beyond 
the 'entropy barrier'-the difference between the topological entropy and half the metric 
entropy). The appropriate result is that 

1 
J ( E + i a )  sz - R e x A j e x p ( i S j f i  ah - inuj /2-ruc /h)  

which may also be written in the general form 

I d  2 ( E  + iru) % -- Im - log Z ( E  + iru) 
x dE 

where for two-degree-of-freedom systems 

m 

Z ( E )  n n [I - exp [- (m + i) APTp + iS,,/h - ixup/Z)] (11) 
p m=O 

is the semiclassical zeta-function, the product running over primitive periodic orbits, labelled 
p .  with stability exponents hp. The non-trivial zeros of Z are taken to define the 
semiclassical eigenvalues (i.e. they represent leading order approximations to the exact 
quantum eigenvalues in the limit as h + 0). In general they are complex and so may be 
written in the form E," = x ,  + iy,. Assuming that Z can be expressed as a product over 
these zeros it then follows that 

Equations (9) and (12) represent equivalent semiclassical expressions ford (in the second 
case, after the subtraction of a), which we now use to obtain two corresponding formulae 
for the form-factor. 
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Taking 01 to be large enough so that the sum in (9) converges absolutely and uniformly 
(i.e., focussing for the moment on what happens beyond the entropy barrier), the periodic 
orbit representation may be substituted directly into (2) to give 

iir 
2ir:d (c Ai Aj exp (S - S j )  - - 2 (ui - uj) 

KF (5 )  -- 

x exp [ -4irta;i} 6 

Alternatively, substituting (12) into (2) leads to the semiclassically equivalent result 

(14) 

here given in the form appropriate when t > 0 (the fact that Kr is an even function of 
T immediately leads to the corresponding form when t < 0). It is important to note that 
in the derivation of this second expression it has been assumed that U > y. Vn. This is 
certainly m e  when the condition on a noted above is satisfied, because the Euler product 
(1 1 )  has no zeros beyond the entropy banier where it converges. It is also worth noting 
that in the case when a < yn the contribution from the corresponding pole of (12) to the 
integrals in (2) takes a different form to that given in (14). 

Even though the derivation of the periodic orbit expression (13) is only justified when 
a lies in the region where (9) converges, formally setting 01 = 0 gives the earlier expression 
(6). Clearly if the same is done in the equivalent formula (14) it follows that 

1 
K S C  ( t) = - exp [2ni?t (x, - x,)] exp [2ir (yn + y,) tz] - 6(0) (15)  

*la p-q+q<y 

which corresponds to the main result of this section. It immediately implies that if any of 
the semiclassical eigenvalues has a positive imaginary part (y" z 0), then K"(r), as given 
by (6). will diverge exponentially as t increases. Specifically, if the largest value of y,, is 
y then as t --t 00 

1 
AEd 

K" ( 5 )  - -=: exp ( 4 x y t 4  

this exponential increase (or 'lift-off) beginning at r* - (yq- ' .  Conversely, if all of the 
yo are negative then the form-factor will decrease exponentially after this value of r .  Hence 
only when it is the case that yo < OVn and, moreover, yn # 0 for a set of states of measure 
zero will Ksc + 1 as t + CO. 

The question of how the semiclassical approximation to the form-factor behaves in the 
long-time limit thus rests on the nature of the imaginary parts y,, of the semiclassical energy 
levels. These occur because the zeta-function (1 l), whose zeros represent the levels, is 
only a leading order asymptotic result as fi + 0. Thus, whilst the complete semiclassical 
expansion for the quantum analogue of Z must have real zeros, this is not the case for the 
individual terms therein (Keating 1992) and consequently yn # 0 for typical states. Since the 
main contribution to these imaginary parts comes from the second order in the semiclassical 
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expansion, it is obviously expected that yn = O(h2) (see, for example, Boasman 1994). 
Furthermore, there is no reason to believe that all of the yn have the same sign. Indeed, 
in a number of the systems that have been studied, they have been found not to (sce, 
for example, Dahlqvist 1992 and Chritiansen and Cvitanovic 1992). Hence it is natural to 
conjecture that the yn will typically be distributed around zero (not necessarily symetrically) 
with a variance that is O(h2) .  

The implication of these argument?. is that the periodic orbit formula (6) for K " ( r )  
is generically expected to grow exponentially for r > r* where 7' = O ( h - q - ' ) ,  the 
exponential rate being of the same order. For two-degree-of-freedom systems this gives 
r' = O(1), that is, we anticipate that Ksc  will be a good approximation to K up to some 7 
which is independent of h ,  after which it should diverge as exp(constr). Moreover, in the 
numerical investigations noted above it was found that ynz  < 1, and there is partial support 
for this too from the result (Boasman 1994) that [ E ,  - x , I  (which one might expect to be 
typically about the same size as y,,) is, on average, roughly equal to 0.032-'. If this is 
indeed the case then it implies that r' > 1, and so the saturation of the semiclassical form- 
factor may still occur. Ln a higher dimension D, the situation is worse in that 7* = O ( F I ~ - ~ )  
and so the lift-off begins semiclassically close to the origin. 

The question now remains as to how the divergence described above arises. Clearly if 
01 is sufficiently large so that the substitutions leading to the periodic orbit sum (13) are 
valid, then, since this necessarily implies 01 > y .  in the equivalent form (14), it follows that 
K F ( r )  -+ 0 as 7 -+ 03. Equation (6) corresponds to formally setting (Y = 0 in (13), that 
is, it relies on the assumption that this expression for K F  is also valid in the region where 
the trace formula (9) is at best only conditionally convergent. Hence the essential point is 
whether K" is indeed the correct limit of KF as CY 4 0. A comparison with the behaviour 
of the equivalent expression (14) suggests that in general it is not. In this case it may be 
verified that as CY --t 0 the poles of (12) that correspond to semiclassical levels with y,, z 0 
pass through the contour of integration in (2).  Then, as noted above, their contribution to 
the final result changes. Hence, simply setting 01 = 0 in (14) does not give the correct 
continuation as 01 -+ 0. and this obviously implies the same fate for equation (13). 

3. Quantum maps 

The analysis of the last section applies directly to the semiclassical form-factors for quantum 
maps as well. Given, for example, a canonical mapping on the unit 2-torus. here taken to 
be a two-dimensional phase space, the corresponding quantum propagator is an N x N 
unitary matrix U, N playing the role of the inverse of Planck's constant. It follows from 
the unitarity of U that its eigenvalues lie on the unit circle in the complex plane, their 
arguments 0, being known as quasi-energies. The density of states is then defined by 

N m  

d (6') = 6 (6' - 2rrk - 0,) 
n=l k=-m 

and has the mean value N/21r. A form-factor may be constructed. by analogy with (2), in 
terms of the fluctuations 2 = d - N/27r about this value: 

K ( L )  = 2 l a d 6 ' l N d &  (6' + F)d T E  - (B - y )  exp(-). 27risL (18) N2 N 
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As for Rows, our primary interest is in the long-time limit L + 03 

Substituting (17) into (18) leads directly to the explicit formula 

where & j  is the Kronecker &symbol. It follows that as L + CO, any amount of smoothing 
leaves K ( L )  - 1, this behaviour emerging when Ll8. - 8,l >> 2x,  i.e. when L >> N .  The 
expression (19) is, by definition, equivalent to 

(20) 

and a semiclassical approximation to K, Ksc ,  may be obtained by substituting for TI U L  its 
leading-order asymptotic representation: as N + 03, 

1 
N 

K ( L )  = - ITrOLIZ - N S L , ~  

Tr U L  x B, exp (ZniNSj - i x q / Z )  (21) 
i 

where j labels fixed points of the Lth power of the classical map, with Sj, Bj and vi 
their action, stability amplitude and Maslov index respectively (Tabor 1983). The question 
analogous to that discussed in the previous section is: does this approximation accurately 
describe the behaviour of K in the long-time limit? 

To answer this, we proceed exactly as in the case for Rows, and so omit some of the 
details. The semiclassical approximation to the fluctuating part of the density of states may 
be written in terms of a zeta-function, defined in analogy with the Euler product (1 1) and 
w,hose non-trivial zeros we take to represent the semiclassical quasi-energies 6': = & + iq.. 
In the complex 8 plane. at a point with imaginary part CY that is sufficiently large for the 
product to converge (i.e. beyond the entropy barrier), this implies that 

1 1 N-I m 

E n=O k=-m ImC O + i 0 1 - 2 x k - @ ~ - i q ~  
d (8 +iff) xz -- 

It follows from the condition on the size of 01 that qn < 01Vn. Evaluating the sum over k 
in this case using the Poisson summation formula then gives 

and substituting this expression into (18) leads finally to 

when L > 0 (the result for L < 0 following immediately from the fact that KF is, by 
definition, an even function of L). 

Formally setting 01 = 0 in (24) gives the result that corresponds to substituting the fixed- 
point sum (21) into (20). Hence it may be seen that if any of the semiclassical eigenvalues 
has a positive imaginary part, then Ksc  diverges exponentially as L + CO, this behaviour 
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emerging when L > q- ' ,  where q represents the largest qn. If, on the other hand, the 
imaginary parts are all negative, then KSE decreases exponentially. Only when qn < 0 
and the fraction of states with qn # 0 tends to zero as N --f 00 does the semiclassical 
approximation fully reflect the long-time limit K -+ 1 .  As in the case of flows, there 
is, however, no reason to expect this to be the case. In fact, there is also no reason to 
believe that the qn cannot be positive, and typically one would expect one or more to be so. 
Hence it is again natural to conjecture that long-time exponential divergence is the generic 
behaviour. 

As also is the case for flows, the imaginary parts of the semiclassical eigenvalues arise 
from corrections to the asymptotic approximation (21). Hence they should typically be of 
the order of the next term in the full semiclassical expansion, i.e. q. = O ( I / N ) .  This 
means that the divergence should begin at L' - N ,  or, in terms of the scaled variable 
corresponding to r ,  I = L/N ,  at I* - O(1) with respect to N. The results of Boasman 
(1994) may also be taken to imply that I' > 1 ,  which indeed appears to be the case for the 
perturbed cat map studied in Argaman eta1 (1993). 

In the case of the baker's map ( B a l m  and Voros 1988), however, a different behaviour 
is expected. Here corrections to the fixed point sum (21) are not due solely to the later 
terms in a stationary phase expansion; they also include contributions related to diffraction 
from the discontinuity of the classical transformation. This is particularly clear from the 
optical realization of the map and its quantization given by Hannay et a1 (1994). There 
the discontinuity was shown to be equivalent to that arising at the edge of a finite wedge 
(essentially, because the map is linear on either side of it). Hence, applying the Sommerfeld 
solution (see, for example, Jones 1964). leads to the conclusion that the corrections should 
be O ( l / a ) .  (Physically, this result follows from the fact that the diffracted rays may be 
viewed as coming from a point source-the discontinuity-and so in two dimensions the 
ratio of the amplitude of the associated field to that representing the non-diffracted rays is 
O ( , / D ) ,  which is equivalent to O(&), that is, to O ( l / f i )  for maps.) 

An explicit confirmation of this behaviour follows from the recent semiclassical studies 
of Saracen0 and Voros (1993). and, in particular, of da Luz and Ozorio de Almeida (1994). 
Their results imply that for the baker's map the next correction to (21) associated with 
a given periodic orbit takes the form of a sum of terms, each corresponding to when a 
point on the orbit lies within a distance I / N  from the edge of the unit square which 
represents the phase space. For an orbit of period n, ergodicity implies that the number 
of these contributions will be - n / N  as n --f 00. However, they come with phases that 
are approximately random, and so the overall order is m. Hence for fixed n ,  the 
semiclassical corrections are O ( l / a ) ,  as deduced above. 

This atypical behaviour of the quantum baker's map obviously has important 
consequences for the problem under discussion. Clearly it leads to the expectation that 
q. = O ( l / f i ) ,  i.e. that the imaginary parts of the semiclassical eigenvalues are O ( a )  
larger than the mean separation. Hence the associated exponential divergence of the form- 
factor will begin at L' - a ,  and the growth will be of the form exp(d./@). In the 
scaled variable 1 = L/N ,  it therefore begins at I' - I/a. This is precisely the behaviour 
found to hold in recent numerical studies (Argaman er al 1993, Dittes er a! 1993). It means 
that as N W. the divergence begins closer and closer to 1 = 0 and so ultimately it 
destroys the initial agreement with the random matrix theory COE result. 

Finally, returning to maps in general, it may be noted that, as for flows, the reason for 
the appearance of a divergence is that the result of simply substituting (21) directly into 
(20) does not actually correspond to the correct continuation of the semiclassical form-factor 
from the region where the periodic orbit sum converges. This is clear from the derivation of 
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the equivalent expression (24) from (22) via (23), which holds only when it is the case that 
CY > vn Vn,  As CY + 0. poles corresponding to semiclassical levels with q,, > 0 pass through 
the contour of integration and so have to be treated separately, giving rise to contributions 
which take a different form to that represented in (24). Hence, simply setting CY = 0 (which 
gives Ksc)  does not actually correspond to the correct limit of K g  as CY + 0 from the 
region of convergence unless v. 6 0. 

4. Periodic orbit correlations 

Based on the assumption that the semiclassical form-factors of typical systems are well 
approximated by the corresponding random matrix ensemble statistics, it was recently shown 
that the periodic orbits of chaotic systems may be expected to exhibit non-trivial universal 
correlations (Argaman et a! 1993). The orbit correlation function considered was 

P ( x ;  T )  AT EA,A, (-I)”;-”J 8 (x  - [si - s,]) (T - g) aaT (T  - T,) (25) 
i#j 

where aAj- is a &function of width AT and the sum includes all pairs of non-identical 
periodic orbits. (The form given in equation (25) is actually the one appropriate for cases 
when the U; are all even). P is closely related to the Fourier transform of the fom-factor 
K (T/27rh;i) in that if 

V k ( y )  = -P (2. T )  
2nT2 2nT’ 

V ( E )  being the volume of the surface of constant energy E in phase space, then 

k ( y )  % Sm (K” (Uz) - g/z)z cos (zy) dz (27) 
= o  

where g is a symmetg-dependent constant such that g/z represents the contribution to 
KSE(l/z) from terms in the double sum (6) in which i and j label the same orbit. An 
explicit form for 1; was derived in Argaman et al by evaluating the integral in equation 
(27) under the assumptions that Ksc % K and that K itself is given by the appropriate 
random matrix form-factor. 

It may now be seen that the arguments outlined in sections 2 and 3 imply that the first 
of these approximations has only a limited range of validity, since the relationship between 
K(l/z) and KSC(l/z) is expected to break down in the limit as z -+ 0. This consequently 
restricts the range of values of y for which can be calculated in this way. Specifically, 
if, as expected for typical two-degree of freedom systems and maps, KsE diverges when 
l /z  > r* = O(I), then the results obtained from (27) for k are necessarily limited to the 
range y < y’ = O(1). Fortunately, this is the region of most physical interest, since the 
action repulsion uncovered for chaotic systems appears as y +. 0. 

The atypical behaviour of the baker’s map with respect to the longtime limit of 
its semiclassical form-factor would appear to imply that the method of deriving action 
correlations described above should not really be applicable in that case. It is therefore 
extremely interesting that the correlations predicted were, nevertheless, still found amongst 
its periodic orbits. This suggests that in general their existence may persist beyond the limit 
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y*; that is, the semiclassical divergence might influence only the method of derivation and 
not the actual form of j. 

There are two more reasons for believing that the action correlations might be more 
robust than is suggested by the divergence-related limitation on the above method of deriving 
them. The first is that it is important to note that the long-time behaviour discussed here 
is directly related to the fact that the periodic orbit formulae (9) and (21) are in general 
semiclassical approximations, and that therefore they only reflect the Hermitian structure of 
quantum mechanics to leading order as h + 0. Hence for systems where these expressions 
are in fact exact, such as compact billiards on surfaces of constant negative curvature (Ba las  
and Voros 1986) and the cat maps (Keating 1991). no such divergence will occur, because 
the zeros of their zeta functions are identically equal to the quantum eigenvalues and so 
must be real. (For Neumann boundary conditions, the divergence discovered by Aurich 
and Sieber (1993) may, of course, still occur, however it appears that this too is due to 
a complex pole which restricts the continuation of the form-factor from the region where 
the manipulations leading to the analogue of (13) are legitimate.) Hence in these systems 
there is no fundamental difficulty in applying the method described above and hence of 
obtaining the action correlation function. But these examples are generally viewed as being 
paradigms of chaotic dynamics and so the presence of correlations amongst their periodic 
orbits points to the wider existence of the phenomenon. Furthermore, since a number of 
them have also been shown to possess GOE random matrix level-statistics, this also provides 
explicit support for the universality of the action correlation result. 

The second reason for believing that the existence of these correlations may transcend 
the problems caused by the long-time divergence of the form-factor is that in principle 
the definition of the correlation function (25) could be extended to reflect additional 
contributions to the semiclassical approximation to K from higher order corrections to 
(9) and (21) (such as those discussed by Gaspard and Alonso 1993). But it is clear from 
the arguments presented i n  the previous sections that the inclusion of these additional terms 
would mean that the imaginary parts of the energy levels would be of higher order in 
Planck's constant and, as a consequence, that the divergence would be postponed to a point 
r** (h) such that 5" (E) + 00 as h + 0. The method of Argaman er nl (1993) could 
then be applied directly to yield the same universal forms for a slightly modified correlation 
function. 
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